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In various applications problems often arise on calculating flow characteristics of an 
incompressible fluid in thin layers confined by rigid surfaces, one of which is fixed and 
the other free and under the action of a given system of forces. This kind of problem occurs 
in the hydrodynamic theory of lubrication [1-3], contact hydrodynamics [4], and some other 
applications. In this case it is usually assumed [1-3] that the kinematics of the rigid 
free surface is known ahead of time (the law of motion of the free surface is given, or its 
equilibrium state is considered). This approach does not always allow one to take into 
account the interaction of the fluid flow and the dynamics of the rigid free surface confin- 
ing this flow region. 

In the present study we consider an approach to constructing an approximate solution 
of three-dimensional nonstationary problems of the type indicated. In this case we consider 
simultaneously the problem of fluid flow in a thin layer with the dynamics problem of a 
rigid free surface confining this layer. The possibilities of this approach are illustrated 
on an example of two problems. 

i. Consider laminar nonstationary flow of a viscous incompressible fluid in a region 
confined by two rigid surfaces, the characteristic distance between which being small in 
comparison with their longitudinal sizes. It is assumed that one of the surfaces, being a 
plane, is immobile, and the other is free and under the action of a given system of external 
forces. 

Introduce a rectangular coordinate system, whose x and y axes are located in the fixed 
plane, with the z axis perpendicular to it. Neglecting then mass forces, and taking into 
account the assumption made above concerning the relation between longitudinal and trans- 
verse sizes of the region considered, the fluid flow is described by the system of equations 

Oux Oux #ux OUx ' I Op p~ O"Ux 
ot + ux'~7-~ + u~ ~'~-,~ + u~-~z = + p ~x P Oz"' ( 1 . 1 )  
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�9 Ou x t~utt Ou z 
0....~. + ~ + T z =  0 (1.2) 

with boundary conditions for the fluid velocity in the transverse coordinate 

z - -  O, u : V; (1.3) 

z = h ,  u - - -  W ( 1 . 4 )  

(V, W are the values of the velocity vector u on the fixed and free surfaces). It is 
assumed here that the free surface is described in the selected reference system by a known 
function of its arguments of the form 

h = h(x ,  g, ql,  q., . . . .  ), ( 1 . 5 )  

w h e r e  q s ( s  = 1,  2 ,  . . . ,  S) a r e  g e n e r a l i z e d  c o o r d i n a t e s  o f  t h e  r i g i d  f r e e  s u r f a c e ,  and  S i s  
t h e  number  o f  d e g r e e s  o f  f r e e d o m  o f  t h i s  s u r f a c e .  The v e c t o r  l-r, b e i n g  t h e  v e l o c i t y  o f  t h e  
p o i n t  o f  t h e  f r e e  s u r f a c e ,  w h o s e  c o o r d i n a t e s  e q u a l  {x;  y } ,  i s  a l s o  g i v e n  by  a known f u n c t i o n  
o f  i t s  a r g u m e n t s  

W = W(x, g, ql, q', . . . . .  ql, q2 . . . .  ) ( 1 . 6 )  

( q s ( s  = 1,  2 . . . . .  S) a r e  g e n e r a l i z e d  v e l o c i t i e s  o f  t h e  f r e e  s u r f a c e ) .  
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Despite the fact that the second surface, confined by the flow region, is assumed immo- 
bile, in the general case V ~ 0, since on this surface, for example, one can have fluid 
supply (or suction) [5]. As to initial and boundary conditions in the longitudinal coor- 
dinates for (i.I), (1.2), we only note that their shape is determined separately for each 
specific problem. 

file presence in the boundary conditions (1.4), with account of (1.5), (1.6), of general- 
ized coordinates and free surface velocities, being unknown functions of time, causes the 
necessity of supplementing (i.i), (1.2) with a corresponding system of equations, describing 
the free surface dynamics. The role of such a closed system of equations is, obviously, 
played by the Lagrange equation of the second kind 

d--t - - F q  = O ,  (s-----l, 2, . . . .  S). (1 .7)  

Here T i s  t h e  k i n e t i c  energy o f  the f r e e  s u r f a c e ,  and Qs are the g e n e r a l i z e d  fo rces  o f  the 
system. We note  t h a t  in  d e t e r m i n i n g  Qs i t  i s  necessary  t o  t a k e  i n t o  account  no t  on ly  t h e  
e x t e r n a l  g iven  f o r c e s ,  bu t  a l so  the s t r e s s e s  i n  the f l u i d ,  genera ted a t  t h e  boundary w i t h  a 
f r e e  r i g i d  s u r f a c e .  

The s o l u t i o n  o f  the problem f o r  the l o n g i t u d i n a l  v e l o c i t y  components w i l l  be sought i n  
the form 

oo oo 

u= = ~ ?u~j, .,j- ~, ?.~j, (1.8) 
~=0 J=0 

where Uxj , Uyj are the yet unknown functions of time and of longitudinal coordinates. 
account of (1.8) we obtain from (1.2), invoking the boundary condition (1.3) for Uz, 

find 

Uith 

' ~ ~-~= + -vT f 
j=o 

(1.9) 

Substituting (1.8), (1.9) into (i.i), carrying out transformations, and reindexing, we 

&l~j 6j. 
ot + (i + t) Vzu~j+, - -  (] + t )(]  + 2 ) ~ u L j + ~ +  

,gp -V~+ 

{=0 

(j =-= 0, t . . . .  ). ( 1 . 1 0 )  

H e r e  and i n  t h e  f o l l o w i n g  f o r  b r e v i t y  5 a c q u i r e s  t h e  v a l u e s  x and y ,  r e s p e c t i v e l y ,  f o r  t h e  
f i r s t  and s e c o n d  e q u a t i o n  o f  ( 1 . 1 ) ,  and 6 j o  i s  t h e  K r o n e c k e r  s y m b o l .  

The s p e c i a l  f e a t u r e  o f  t h e  s y s t e m  o b t a i n e d  ( 1 . 1 0 )  i s  t h a t  i n  c o n s t r u c t i n g  t h e  a p p r o x i -  
m a t e  s o l u t i o n ,  r e t a i n i n g  i n  i t  f o r  e a c h  5 t h e  f i r s t  J e q u a t i o n s ,  we a l w a y s  r e a c h  a s u b s y s t e m  
o f  2J  e q u a t i o n s  c o n t a i n i n g  2J  + 5 unknown f u n c t i o n s :  

p, Uxl , u.u.~, ( j  = O, t . . . . .  g -~- 1). (l.ll) 
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The first four deficient equations follow from the boundary conditions (1.3), (1.4) for 
the longitudinal velocity components, and, with account of (1.8), are 

J J-1 J + l  

u~o= Vx, Uuo= Vu, W,== ~ hiuxj, W y =  ~ hiuu~. ( 1 . 1 2 )  
J-0 J=0 

The l a s t  d e f i c i e n t  e q u a t i o n  can  be  o b t a i n e d  f rom t h e  b o u n d a r y  c o n d i t i o n  ( 1 . 4 )  f o r  Uz, and  
w i t h  a c c o u n t  o f  ( 1 . 9 )  i s  r e p r e s e n t e d  i n  t h e  f o r m  

W z =  g z - -  # , ~ \ - - ~ - z  -~- oy ]" ( 1 . 1 3 )  
3 = 0  

Thus, the final construction of the approximate solution of these problems reduces to a 
simultaneous solution of a system of 2J + S + 5 equations, consisting of (1.7), (1.12), 
(1.13), and the 2J first equations (J equations for each of the two ~) of system (i.i0). 
The solution of this system must be carried out both with account of initial conditions for 
the generalized coordinates and velocities of the free surface, and with initial and boun- 
dary conditions in the longitudinal coordinates for the functions (i.ii). The latter condi- 
tions must be obtained from the corresponding original initial and boundary conditions for 
u x and Uy with account of (1.8). We provide an approximate solution of several problems of 
the type indicated. 

2. Consider fluid flow in the region between two parallel plates of length 2L and 
width 2D, one of which is immobile and the second is free and under the action of a constant 
force G normal to this plate. For this statement of the problem the mobile plate is a sys- 
tem with one degree of freedom, for whose generalized coordinate we choose the distance h 
to the fixed plate. The solution of the problem of a compressed fluid film between parallel 
rigid plates when G is controlled by the total pressure in the film is given in [4]. 

Introduce the rectangular coordinate system ( I x l ~ O  , l y l ~ L ) .  The boundary conditions 
(1.3), (1.4) acquire the form 

z ~ 0 :  u~ = u v =~ u z = 0; z = h : u  x = u~ = O~u z = dh/dt, ( 2 . 1 )  

and  t h e  s y s t e m  ( 1 . 7 )  r e d u c e s  t o  t h e  d i f f e r e n t i a l  e q u a t i o n  

D L  

m - ~  = - -  a + 4. (p --  pc) dx dy, ( 2 . 2 )  
0 0 

where  m i s  t h e  mass  of  t h e  m o v i n g  p l a t e ,  and  Pc i s  t h e  c o n s t a n t  p r e s s u r e  i n  t h e  s u r r o u n d i n g  
medium. I n  w r i t i n g  down ( 2 . 2 )  i t  was a s s u m e d ,  i n  a d d i t i o n ,  t h a t  t h e  d o m i n a t i n g  c o n t r i b u t i o n  
to  t h e  f l u i d  s t r e s s  a t  a b o u n d a r y  w i t h  a f r e e  p l a t e  i s  p r o v i d e d  by  t h e  s t a t i c  p r e s s u r e  o n l y .  

C o n s i d e r  t h e  a p p r o x i m a t e  s o l u t i o n  of  t h e  p r o b l e m ,  when i n  ( 1 . 1 0 )  t h e  r e s t r i c t i o n  i s  
made to  t h e  f i r s t  e q u a t i o n  o n l y  f o r  each  o f  t he  two 6. We n o t e  t h a t  w i t h i n  t h i s  a p p r o x i m a -  
t i o n  (J  = 1) t he  n o n s t a t i o n a r i t y  of  t h e  v e l o c i t y  and  p r e s s u r e  f i e l d s  i s  " m a n i f e s t e d "  o n l y  
t h r o u g h  t h e  t i m e  d e p e n d e n c e  of  t h e  g e n e r a l i z e d  c o o r d i n a t e  h .  I n  t h i s  c a s e  t h e  d e t e r m i n a t i o n  
of  t h e  p r e s s u r e  f i e l d  i n  t h e  r e g i o n  i n v e s t i g a t e d  r e d u c e s ,  w i t h  a c c o u n t  of  ( 1 . 1 2 ) ,  ( 1 . 1 3 ) ,  
and  ( 2 . 1 ) ,  t o  s o l v i n g  t h e  s p e c i a l  c a s e  o f  t h e  R e y n o l d s  e q u a t i o n  
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Ap = t2~ dh 
h 3 dt (2.3) 

(A is the Laplace operator). As boundary condition for the pressure we took p = Pc on the 

external plate contour. 

Solutions of (2.3) were sought in the form 

p = p~ -~- Cnj~ cos ---if- cos ~j'y - T '  a ~ = ~ - ( 2 l - - t )  ( / = t ,  2 . . . .  ). ( 2 . 4 )  
" n = l  h = l  

Here the expansion coefficients, taking into account the orthogonality conditions of the 

basis functions, are determined as follows: 

"j~ dh C,,j, = 48p~ (--1) "+l' e~ e2 \-I 
h%,,~h ~ + ~ - ~  n, k = 1, 2 . . . .  ( 2 . 5 )  

The f l u i d  v e l o c i t y  d i s t r i b u t i o n  u n d e r  t h e  p l a t e  c an  be  o b t a i n e d  w i t h i n  t h e  a p p r o x i m a t i o n  c o n -  
s i d e r e d  f r o m  ( 1 . 8 ) - ( 1 . 1 0 )  w i t h  a c c o u n t  o f  ( 2 . 4 ) ,  ( 2 . 5 ) .  

S u b s t i t u t i n g  ( 2 . 4 ) ,  w i t h  a c c o u n t  o f  ( 2 . 5 ) ,  i n t o  ( 2 . 2 ) ,  f o l l o w i n g  t h e  c o r r e s p o n d i n g  
t r a n s f o r m a t i o n s  we r e a c h  an e q u a t i o n  d e s c r i b i n g  t h e  d y n a m i c s  o f  t h e  f r e e  p l a t e  

oo cr 

d (t'/' (h')a tit' ~ m - n ~  =L ,,=1 ,, k " 

I n  ( 2 . 6 )  t h e  d i f f e r e n t i a t i o n  o f  t h e  d i m e n s i o n l e s s  ~ _ e n e r a l i z e d  c o o r d i n a t e  h '  = h / L  i s  c a r r i e d  
out with respect to the dimensionless time t' = tCG/(-~-~m). 

As illustration we show in Fig. 1 the dependences of h' on t', obtained for A = 0.132" 
i0 -z by numerical solution of (2.6) with initial conditions: t' = 0, h' = 0.i, dh'/dt' -- 0; 
--0.5; --i (lines 1-3). It is seen that the process of film compression under the action of 

a constant force occurs conditionally in two stages. At the first stage, when the "support- 
ing power" of the film, determined by the double integral in (2.2), is small in comparison 
with G, the free plate is quite quickly approximated by a fixed plate, is practically not 
subject to film resistance. The initial phase of this stage occurs, obviously, in a regime 
near that of a free plate. At the second phase, when the "supporting power" of the film 

becomes comparable with G, we have d2h'/d(t') 2 -~ 0. 

We note that the study of the axially symmetric problem on fluid film compression 
between disks of radius R by the approach described above in a cylindrical coordinate system 
reduces, in the first approximation, to solution of an equation coinciding in shape to the 
description in (2.6). In this case the dimensionless parameters of Eq. (2.6) are defined in 

the form 

h t V Y h' = w, ---- t ~, A -g-d" 

3. Consider the compression process in a gravity force field of a viscous incompres- 
sible fluid of a thin rectangular homogeneous plate of mass m immersed in this fluid, which 
is freely based on some fixed plane, so that some tapered region is formed between the plane 
and the plate. We introduce a rectangular coordinate system, as shown in Fig. 2. Despite 
the fact that the plate is freely based on a plane, it is assumed that during the fluid 
compression from the inclined region there is no displacement (gliding) of the plate 
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relative to the plane along thexaxis. It is assumed that the maximum distance between the 
plate and the fixed plane is quite short in comparison with the plate sizes, and the fluid 
flow in the inclined region can be described by the system (i.i), (1.2) with account of all 
assumptions made earlier. As boundary conditions for the fluid velocity along the trans- 
verse coordinate we use (1.3), (1.4), taking into account that for the problem investigated 

h(x, t ) = x  tan~, V=-- V~= V,----O, 
W= (x, t) d~ (3 .1 )  =--xtan~-d-[, W~-O, Wz(x,t)=x 

( T i s  t h e  g e n e r a l i z e d  c o o r d i n a t e  o f  t h e  p l a t e ,  b e i n g  t h e  a n g l e  b e t w e e n  t h e  p l a t e  a n d  t h e  
f i x e d  p l a n e ) .  I n  a d d i t i o n  t o  ( 1 . 3 ) ,  ( 1 . 4 ) ,  we w r i t e  down t h e  b o u n d a r y  a n d  i n i t i a l  c o n d i -  
t i o n s  

x = 2 D c o s ~ ,  p = p c ,  

g = +__L, p =: Pc; (3.2) 

x=O, p ~ oo, 

t ==0,  (p := (P0, d ~ / d t -  o%, ( 3 . 3 )  

where 2D, 2L are the plate sizes, respectively, in the directions of the x and y axes, Pc 
is the fluid pressure in the surrounding space of the plate, and ~0, ~')0 are the initial 
values of the resolving angle of the inclined flow region and the angular velocity of the 
plate. 

Consider the simplest special case, when in constructing the approximate solution one 
is confined in (i.i0) to the first equation for each of the two $. The pressure field in 
the inclined region can then be found from the Reynolds equation 

a (haa/, ~ o ( a,,~ -- ~UTyj i2~W~, (3.4) 

whose solution is sought in the form 

~ 8nY 
P = Pe + u , ,cos-g- - ,  s,~ = [ ( 2 n - -  |)  ( 3 . 5 )  

n = l  

(Cn are the yet unknown expansion coefficients, being functions of the coordinate x and time 
t). 

Substituting (3.5) into (3.4), and applying the orthogonality condition of the basis 
functions, following transformations with account of (3.1) we reach an ordinary differential 
equation in Cn: 

d~C, dC, /~nx\2 24~L i~,,+i d~ 
x: ., + 3x - -  [-~--) C~ entan3 ~ . . .  dz" ~ == (--" ~T' n = i, 2, (3.6) 

We note that the time dependence of Cn, and consequently, the velocity and pressure 
fields, is manifested within the approximation considered (J = i) through the time depen- 
dence of the generalized coordinates and velocities of the plate. The general solution of 
(3.6) is 

1 1 7  



C~ -- ~tanS------ ~ ~ + u c~J~ { c,d~, --f , n=J, 2 .... (3.7) 

(Cln, C2n are unknown integration constants). Here and in the following I~, K l are the 
modified Bessel function and Macdonald function of order ~. 

Taking into account the boundary conditions (3.2), (3.3), the behavior of the functions 
Ii and K, for r << 1 [6], as well as the a priori assumed convergence for all IYI~.L 

oo 

of the series ~ cl,e,,cos~:/=oo, it can be shown that the integration constants in (3.7) 
n=1 

are found in the form 

24ttLE. (-- t) n+l dip e1,, 
Ct" = s2 tans r dt S C2n = -~t* 

( 3 . 8 )  
2De. cos q~ 

E , ~ = [ a ~  x - K , ( a . ) ] I 7  i(a,,),  a n =  L , n = i ,  2 . . . .  

The final determination within the approximation considered of the pressure field, and 
consequently, with account of (1.8)-(1.10), of the velocity field in the inclined region 
reduces to finding the time dependence of the generalized coordinate q0 from system (1.7), 
which is transformed to the differential equation 

L 2 Dcosq~ 

, xdxdy 
" d ~  . . . .  D m g c o s ~ + 2 y  y ( p - - p r  ~, ,. ( 3 . 9 )  

0 0 

w h e r e  g i s  t h e  f r e e  f a l l  a c c e l e r a t i o n ,  and J y  = 4mD2/3 i s  t h e  moment o f  i n e r t i a  o f  t h e  p l a t e  
with respect to the y axis. In deriving (3.9) it is assumed in addition that the force 
action of the fluid on the plate reduces to the static pressure only. Substituting now 
expression (3.5) into (3.9) with account of (3.7), (3.8), following several transformations 
we reach an equation for determining ~ = ~(t): 

A~ (qD) d(p 
J~ =--cos~ (3 i0) 

d (t') z tana~  dt' 

( t '  = t , /mgD/Jy  i s  d i m e n s i o n l e s s  t i m e ) .  For  b r e v i t y  o f  d e s c r i p t i o n  we p u t  i n  ( 3 . 1 0 )  
o o  

72~ . /~ (3.11) 

R=-a- V 
(y = 1.781... is the Euler constant). 

As mentioned above, since flows are considered in a region whose transverse sizes are 
small in comparison with its longitudinal sizes, it can be assumed that ~<<|, putting 

sin q~ ~ qD, cos qD ~ t .  (3.12) 

Taking into account the last replacement, Eq. (3.10) is represented in the fo~m 

d",p -- t -- A dq) A A, (0). (3.13) 
d (t') z -- r dr--7' --- 

It is noted that structurally the description (3.13) coincides with (2.6). The same can be 
said concerning the solutions of these equations for identical initial conditions and equal 
values of the parameter A. Therefore, the nature of variation in ~ with the flow of dimen- 
sionless time t' can be illustrated by the dependences in Fig. i. 

Determining during the numerical solution of (3.13) the time dependence of the general- 
ized coordinates, with account of (I.i0), (1.12), (1.13), (3.5), (3.7), (3.8) we reach equa- 
tions, determining the pressure and velocity fields in the inclined flow region: 

I IY) p = p~ + - ~  ~ F . ,  Z- cos , 
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U z 

u~ = -- z Tf + F2~ cos ~a L dt ~ ' 
" t i l l  

u~, - t2 (:~r~L-- ='P) dt '~q~,,_, ~,,F~,, sm I-Z }' (3.14) 

Here 

<,>"+'{ __,:_,: (V) :,..m 
�9 z = ~7~ -- ~,~ \~1 + E . I ~  + K, \--Z-/jI; 

. ,  m - 2  + 

+ E,, [~. (~-),o (-~f)-  2 (~-)"/, (-~-~-f)] } (,, = 1, 2 . . . .  ). 

It follows from (3.14) that the time dependence of the excess pressure field (p -- pc ) is 
determined by the cofactor ~-3dq~/clt, which in turn is linearly related, taking into account 
(3.13), with the angular acceleration of the plate. As an example we show in Fig. 3 lines 
of equal dimensionless excess pressure 4(p -- Pc)LD/(mg) in the inclined region, constructed 
with account of (3.13), (3.14) for D/L = I, when the angular acceleration of the plate is 
d~r Figure 4 shows the dimensionless velocity field in the cross section 
y = 0 of the inclined region, constructed with account of (3.14) for D/L = 1 and q0 = 0.262. 
As the velocity scale at a given moment of time we took the value--2Dd~/dt, corresponding to 
the linear velocity of the plate points most removed from the axis of rotation. 

Consider the problem of validity limits of the relations obtained (3.14), for which we 
used, with account of (3.11), the theorem of center of mass motion of the plate in the pro- 
jection on the z axis: 

mD 7-- ~ 7? = (3.15) 

(N is the plane reaction, on which the plate is based). Taking into account (3.14), in 
(3.15) we took for brevity 

L "D yy t'~'L2B' d(P 
F = 2 (P - -  Pc) dx dy = ~3 at" 

0 O 

Following the transformations and estimates of [6, 7], B~ is 

| { / ' t~n 
B,  = ~ ~ z - ~ ' - - K , ( a . ) - - ~ z , ~ K o ( a , O - - - - T [ K o ( c t . ) L  , (r162162 

n-- I  EB 
f q/ ~ n  

+ E,, L ,t4 s, (=,,)+ - - r  [4 ( ~ . ) -  '1  (~n) Lo 

(L l is the modified Struve function of order Z). 

For a known plate law of motion ~ = ~(t), determined by solving (3.13), Eq. (3.15) 
makes it possible to find the unknown value of the plane reaction N. In this case N = 0 
obviously corresponds to the moment in which the plate becomes freely based on the plane, 
"buoyant" on thehydrofoil. Starting with this moment of time, the plate behavior can no 
longer be described by the solution of Eq. (3.13), since the plate acquires additional 
degrees of freedom. 

The plate "buoyancy" condition on the hydrofoil can be obtained for N = 0 by elimina- 
ting ~/dt ~ from (3.15) by means of (3.13), and following transformations it can be repre- 
sented in dimensionless form 

(to')%p + B~.q~-3o~ ' -- --$ = O~ B 2 = A + -ff BB, -b ' co = dt--r. 
(3.16) 
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As an example we provide in Fig. 5 the dependences of m' on ~ , obtained during the 
numerical solution of (3.13), for the following initial conditions: t' = 0, ~ = 0.1, m' = 
--i; --0.5; 0 (lines 1-3). The calculations were performed for B = i0 -~ for a plate with 
D/L = i, corresponding to A = 0.132"10 -~, B2 = --0.274-10-". For the same values of the 
original parameters we derived, with account of (3.16), the boundary (curve 4) of the region 
of and ~' values, in achieving which the plate is "buoyant" on the hydrofoil. The 
primed portions of curves 1-3, though formally corresponding to Eq. (3.13), cannot be real- 
ized. This is due to the fact that the plate behavior following the moments of "buoyancy" 
corresponding to the intersection points of lines 1-3 and 4 are no longer described by Eq. 
(3.13). 

The results obtained in the examples considered for the simplest special case, when in 
(I.i0) attention is restricted to the first equation only for each of the two ~(J = i), are, 
naturally, of approximate nature. Nevertheless, it is possible to find preliminary estimates 
of flow characteristics. However, when higher accuracy is required, it is suggested to use 
in (I.i0) a larger number of equations (J~.2). 
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PLANAR SURFACE WAVE GENERATION IN THE 

PRESENCE OF SLIGHT BOTTOM ROUGHNESS 

B. E. Protopopov and I. V. Sturova UDC 532.591 

At present a linear theory of surface wave generation by various perturbations in a 
liquid with horizontal bottom has been developed quite well. However in the case of a 
liquid with rough bottom analytical studies of this problem have met with severe mathemati- 
cal difficulties. The perturbation method is usually used for slight bottom roughness [i]. 

Using a linear formulation, the present study will investigate the effect of slight 
localized bottom roughness on the behavior of surface waves for two problems: decay of an 
initial elevation of the free surface and motion of a surface pressure region. A comparison 
is performed with a numerical solution of the original problem, obtained by the finite dif- 
ference method. 

i. Let an ideal incompressible homogeneous liquid occupy the region --~ < x < ~, 
-H(x)~y~O, where x is the horizontal, and y, the vertical coordinate, H(x) = Ho -- 
h(x), h(x) § 0 as Ixl § ~. At the initial moment t = 0 the free liquid surface is displaced 
from its equilibrium horizontal form and the expression y = fo(x) is specified. The velo- 
city potential of the given flow ~(x,y, t) satisfies the equation ~ 
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